翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Schottky space : ウィキペディア英語版
Schottky group
In mathematics, a Schottky group is a special sort of Kleinian group, first studied by .
==Definition==

Fix some point ''p'' on the Riemann sphere. Each Jordan curve not passing through ''p'' divides the Riemann sphere into two pieces, and we call the piece containing ''p'' the "exterior" of the curve, and the other piece its "interior". Suppose there are 2''g'' disjoint Jordan curves ''A''1, ''B''1,..., ''A''''g'', ''B''''g'' in the Riemann sphere with disjoint interiors. If there are Möbius transformations ''T''''i'' taking the outside of ''A''''i'' onto the inside of ''B''''i'', then the group generated by these transformations is a Kleinian group. A Schottky group is any Kleinian group that can be constructed like this.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Schottky group」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.